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A COMPARATIVE STUDY OF LINEAR AP TAY SYNTHESIS
TECHNIQUE USING A PERSONAL COMPUTER

INTRODUCTION

Procedures for synthesizing the radiation patterns of linear arrays
based on the specification of its sidelobe structure are well establish-
ed. One of these is the technique originally proposed by Dolphl and
it provides for a uniform sidelobe level. Another technique, although
developed for line sources, is due to Taylor 2 and can be adopted for
linear arrays. The latter is popular due to its synthesized aperture
distributions which are more readily realizable. A discrete version of
the Taylor synthesis procedure is discussed by Shelton 3.

Both Dolph-Chebyshev and Taylor synthesis techniques, fundamental-
ly, rely on manipulation of the zeros of the linear array pattern
functior The aperture distribution for the desired pattern function
usually requires lengthy computations. In case of Dolph-Chebyshev
synthesis, this problem has been addressed by several authors 4-9

over the past few decades. The Taylor synthesis, in effect, uses a
discrete Fourier Transform technique (called Woodward10 synthesis)
to obtain the aperture distribution. These procedures do not have
much in common; as a matter of fact, in case of an endfire Chebyshev
array, expression for the element excitations are quite different from
that for a broadside Chebyshev array. However, the knowledge of the
pattern null locations in the above synthesis procedures can be used
to develop a simple expression that is suitable for all cases. The
expression is readily developed based on the convolution synthesis
procedure discussed by Laxpati1 1 for planar arrays.

With several alternate expressions being available for the aperture
distribution of folph-Chebyshev and Taylor syntheses, it is desirable
to undertake a study to make some recommendations as to the suitability
of these expressions in numerical computation. Due to the increasing
use of personal computers by antenna engineers, it is felt that an in-
vestigation of this nature should be confined to the computation using
such small computers. Thus, in this paper, we present the results of a
comparative study of various linear array synthesis techniques. In the
next section, after a brief discussion of the three basic techniques
for evaluation of Chebyshev coefficients, we discuss the accuracy and
computation times associated with these techniques. The following
section presents the results of the study involving two different
techniques (one due to Shelton 3 and the other using the convolution
procedure) for Taylor synthesis. In the last section, some general
observations about the investigation and on the results are offered.

DOLPH-CHEBYSHEV SYNTHESIS

Following Dolph's paper on Chebyshev synthesis, Barbiere4 ,
Van Der Maas 5 , Salzev6 , and Brown 7,8 reported on alternative means of
evaluating aperture distribution for Chebyshev arrays. Although they
are not the same, the expressions by Barbiere, Salzev and Brown are

Manuscript approved February 21, 1984.
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similar in that they express the current in an element in terms of a
finite series of terms involving ratios of factorial functions and with ,.
alternating sign. The expression by Elliott 12 is representative of
this group and is the one used in this work and is reproduced below.
We shall call this the classical expression. Also, although our results
are valid for odd or even number of elements, for simplicity, we will
present examples of odd number of elements. Thus, all linear arrays
discussed in the following have (2N+1) elements; the element numbering
scheme is shown in figure 1, where the elements are assumed to have a
symmetric excitation leading to the broadside radiation.

Classical Technique:

I N -p N r N+p+l 
(uo) 2p

I =I+- r N-p-~ l (p+n+l)r(p-n+1) 
(1)

p=n

n=0,1,2,...,N.

where T2N(uo)=R and SLL = 201 log R. Here, SLL is the desired sidelobe
level in dB, T2N(x) is the Chebyshev polynomial of degree 2N and r(x)
is the Gamma function.

In contrast, the expression given by Van Der Maas involves terms
of the same sign inside the summation. Bresler 9  reformulated the
expression into a recursive form using nested products. This, we feel
is a distinctly different form of representation of the coefficients.
Thus, we use this representation (called Nested Product Technique) in
our comparison. This expression (in our notation) is shown below.

Nested Product Technique:

IN-n = 2N a NP(n,fm,a). n=0,1,2, (2)

n n
where NP(n,fma) = n-m j; n - 1.

m=1 j=m

m(2N-2n+m),
and fm = (n-m)kn+i-m)

also a = 1 - 2

The third technique is based on the convolution of three element
canonical arrays1. These canonical arrays have outer element excita-
tions of unity, whereas the center element excitation cj; for j=1,2,
...N is chosen such that the jth canonical array has a pattern null
at the location of the jth symmetric zero pair of the Chebyshev

2
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Figure 1 - (2N + 1) Element Linear Array
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polynomial. These arrays are then convolved to generate the large
array. Convolution Technique:

(2j-1)
Woj = cos r ; j=1,2,...,N.

Where woj are the zeros of the Chebyshev polynomial T2N(w).

C= -2cos uoj;

uoj = 2arccos (woj/uo).

And the aperture distribution

N
I(x) = I InS(x-nd) = fl*f2*---*fN (3)

n=-N

where fi = 6(x-d)+CjS(x) + S(x+d).

Using these three expressions (equations (1), (2) and (3)), comput-
er programs NESTED, CHEB and CONCHEB, respectively, were written to
implement the Chebyshev synthesis. Different versions of the program
suitable for implementation on different machines were written. These
were two personal computers used in the numerical phase; one is an 8-
bit Radio Shack TRS-80 Model II which has available an interpretive
RASIC language. The other computer is a 16-bit NEC Advanced Personal
Computer with BASIC and FORTRAN IV compilers. Also, in order to
ascertain the numerical accuracy, some of the programs were run on a 32-
bit mainframe computer (Texas Instrument's Advanced Scientific Computer
at the Naval Research Laboratory) using double precision (REAL*8)
arithmetic.

The computation was carried out for several different array sizes
ranging from 15 to 99 elements; although, in principle, there is no
limit to the size of arrays that may be synthesized. Furthermore, all
designs specified a sidelobe level of 30 dR.

Figure 2 shows the run time, under FORTRAN, for the three afore-
mentioned Chebyshev synthesis programs versus number of elements. The
CHEB program was the slowest; but more importantly, the program failed
to converge to the correct element excitations beyond 30 elements.
Over 21 elements the accuracy of the excitation was only to 2 digits.
When the program was run using double precision arithmetic it still
failed to converge above 31 elements. This indicates that the classical
technique inherently has a limitation as to the largest size of array
that may be synthesized.

The convolution synthesis program, CONCHEB, although much faster
than CHEB, certainly cannot complete with NESTED program in speed.
Also, beyond 61 elements, the CONCHEB program failed to converge. The
current version of the program convolves three-element arrays using
zeros of the Chebyshev polynomial in an alternating sequence; i.e., the

4
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sequence in j is 1,N,2,N-1,3,---. No attempt was made to modify this
convolution process to improve the accuracy; past experience with the
convolution process indicates that some improvement may be possible.
However, with reference to figure 2, it is obvious that the NESTED
program is the most efficient one.

The results of the element excitations indicate that it is an
extremely stable algorithm; provides a very good accuracy in single
precision (six digit accuracy); and of course, it is very fast. This
program, NESTED, was translated into BASIC and run on the TRS-80, Model
II computer. The execution time ranged from two seconds for 21 element
array to 36 seconds for a 99 element array. Although, the execution
times in BASIC are about 15 to 20 times longer than that in FORTRAN,
they are not significantly long to be of any major consequence. The
NESTED program was also run using double precision (16 significant
digits) on the mainframe computer. The total execution time for all
10 different arrays was less than 0.3 seconds!

Our experience with synthesis of various Chebyshev arrays using
these three different techniques clearly demonstrates that the most
important consideration on small computers is not the speed of execution
but the accuracy of the final result. In this sense as well, the nested
product algorithm proposed by Bresler 9 is the winner.

TAYLOR SYNTHESIS

Synthesis procedure proposed by Taylor2 applies to a continuous
aperture. In practice, this procedure is used for discrete aperture
(arrays) by properly discretizing the continuous distribution. Shelton 3

presented a synthesis procedure for discrete aperture distribution for
Taylor type sidelobe structure. He expressed the pattern function in
the form of a product function of zeros and then carried out the synthe-
sis exactly analogous to that by Taylor; that is, to use the Woodward
synthesis technique. In particular, for a 2N+1 element array, all 2N
zeros are explicitly specified in the pattern function. Thus, analogous
to the Chebyshev synthesis, this synthesis is amenable to the convolu-
tion procedure. In view of this, in the case of Taylor synthesis, we
compare the two techniques; one proposed by Shelton and the other
being the convolution synthesis. Before presenting and discussing the
results of the investigation, the pertinent expressions for the two
syntheses are given below. Once again, we will limit out discussion
to arrays with odd (2N+1) number of elements.

Discrete Taylor (Shelton3 ) Technique:

2_ f A2+(n-1/2) 2
uon T-2N+1) 4  , n=1,2,---,n-1

(4)
21Tn

= (2N+1) ,
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where A w cosh-l(R); n is equal to the number of near-in zeros that
are moved in order to achieve the desired sidelobe ratio R (or equiva-
lently the number of near-in sidelobes that are required at the speci-
fied level). The element excitations are

2mpff
Ip 1+2 am cos 2N+1 , p=,---,N. (5)

m=1

where
27rm

am= E ( )

N (cosu-cosuon)E(u) = R (IcOSUon)

n=1

For the case of the convolution synthesis procedure, once the
symmetric zero pairs are established, the excitation of the center
element of a three element canonical array is readily determined. The
procedure and expressions are analogous to the case of Chebyshev
convolution synthesis. They are

zeros are ± uoj; j=1,2,---,N

where uoj are defined through equation (4), and the excitation

Cj = -2cosuoj.

The synthesis of the large array is carried out using the convolu-
tion of three element arrays, chosen in the same alternating zero
sequence as indicated for the Chebyshev array.

Rased on these two procedures, computer codes STAYL and CONTAYL,
respectively, were developed in FORTRAN using single precision arithme-
tic Run time associated with these codes for - = 6 and the sidelobe level
of 30 dB for various number of elements from 15 to 99 were recorded and
are shown in figure 3.

The program CONTAYL failed to converge, once again, for arrays
with more than 71 elements and provided only two to three digit accuracy
between 31 and 61 elements. These results are similar to the Chebyshev
convolution synthesis. Even the run time data is very close.

The computation time associated with STAYL has an interesting
behavior with increasing number of elements; it is almost linear. This
is to be expected, since the number of computations to be carried out
for each element is determined by I and not (2N+1). The corresponding
growth for CONTAYL is exponential. Thus, for small number of elements
CONTAYL may save some computation time but will suffer in accuracy as

7
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the number of elements increases. Acheck of STAYL program using double
precision arithmetic on the mainframe computer indicates that it has
five to six digit accuracy in single precision on a small computer.

It should be noted that the STAYL program code was developed by
Shelton for the HP-41C, a pocket calculator. On this calculator, one
has 10 significant digit capacity and thus the results obtained are
more accurate than with a single precision FORTRAN Code. But, as one
would expect, the HP-41C is very slow; it took approximately 5 minutes
to synthesize a 31 element array.

IJ

STAYL Code was also run on NEC-APC using CBASIC, a compiler BASIC.
In CRASIC, the computation times were significantly higher, ranging
from 30 seconds for a 15 element array to 217 seconds for a 99 element
array. However, the computation was carried out to 14 significant
figures.

Once again, as with Chebyshev synthesis, we find the overriding
consideration in Taylor synthesis is not the computation time, but the
accuracy of the results. In this sense, Shelton's procedure is most
efficient.

CONCLUSIONS

As is often the case with engineering investigations, the most
significant results presented in this paper are not what we were looking
for when we began the project. We were originally interested in
evaluating computer run times for the various programs. However, two
points soon became apparent -- first, most of the programs run fast
enough, even on small machines, so that run time is not a major concern,
and second, only two of the programs give adequate precision for the
range of array size that was investigated. It is concluded that
Bresler's nested product algorithm gives excellent results in terms of
speed and precision, and also that Shelton's discretized procedure
allows precise Taylor synthesis for all sizes of arrays. Finally, it
is noted that the programs are very brief; the FORTRAN computer codes
for all five programs are included in the appendix and the codes in
BASIC are also available from the authors.
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APPENDIX

In this appendix the FORTRAN IV computer codes for NEC-APC with
supersoft FORTRAN compiler are listed. As noted in the main body of
the report, the programs are brief; there are a number of "comment"
statements in the listing and thus are easy to follow. No sample inputs
or outputs are included.

Programs listed in the following are NESTED, CHEB, CONCHEB, STAYL
and CONTAYL.

11
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001 C PROGRAM NESTED
002 C REVISED 01/28/84
002 C CHEBYSHEV ARRAY ALGORITHM USING NESTED PRODUCTS FORMULATION
003 C INPUT IS M =NO. OF ELEMENTS; SLL =SIDELOBE LEVEL IN DB.
004 REAL I(100), NP, C(100)
005 WRITE (1,100)
006 100 FORMAT P' ENTER DATA: M,SLL')
007 READ (1,200) M,SLL
008 200 FORMAT (IO,FO.0) ,
009 N =M/2
010 TEST = C-l)O'MI
0il IF(TEST.GT.O) GO TO 10
012 N x(M -1) 2

013 10 R =10. *' SLL / 20.)
014 ARCOSH =ALOG ( R + SQRT ( R**2. -1))

015 A = ARCOSH / (M-i)
016 ALPHA CTANH (A) ) *2.

017 I(N+1) z 1.0
018 I(N) ( M-1) * ALPHA
019 DO 30 K =2, N
020 NP 1.0
021 DO020 J = 1, K-i
022 FN =J * (M-1-2*K.J)
023 FD =(K-J) * (K+1-J)
024 F = FN/FD
025 NP =NP * ALPHA * F + 1.
026 20 CONTINUE
027 I(N*1-C) = ( M-1 ALPHA *NP

028 30 CONTINUE
029 DO040 L = 1, N+1
030 C(N4L) = I(L)
031 C(N+2-L) = I(L)
032 40 CONTINUE
033 WRITE (4, 50)
034 50 FORMAT C I CURRENTS')
035 DO060 L = 1, M
036 WRITE (4,70) L, C(L)
037 60 CONTINUE
038 70 FOR14AT (1OX, 12, 1OX, F10.6)
039 STOP
040 END

12



001 C PROGRAM CHEB
002 C REVISED 01/28/84
003 C BASED ON A CLASSIC METHOD OF COMPUTATION OF CHEBYSHEV
004 C EXCITATION VOLTAGES.
005 C REFERENCE ANTENNA THEORY AND DESIGN; ELLIOTT.
006 C ODD NUMBER OF ELEMENTS ONLY
007 REAL CC(100),C(100),CRNT(100)
008 WRITE (1,100)
009 100 FORMAT (' ENTER DATA: N, SLL')
010 READ (1,200) N,SLL
011 200 FORMAT (IO,FO.0)
012 M = N-1
013 MM = M/2
014 NN = (N+1)/2
015 PI = 3.1415927
016 R = 10. ** (SLL/20.0)
017 U = COSH (RCOSH (R)/ FLOAT (M) )
018 DO 10 I = 1,NN
019 11 = 1 -1
020 C(I) 0.0
021 DO 20 J = I,NN
022 JJ = J - 1
023 A = FLOAT (NN + JJ)
024 GA = GAMALN (NN + JJ)
025 GB = GAMALN (NN - JJ)
026 GE = GAMALN (J - II)
027 GD = GAMALN (J + II)
028 UP = U ** (2*JJ)
029 SIGN = (-I) * (NN-J)
030 TL = EXP (GA -GB -GE -GD)
031 TN = UP*SIGN*(2.*NN-1.)/(2.*A)
032 T = TL * TN
033 C(I) = C(I) + T
034 20 CONTINUE
035 10 CONTINUE
036 DO 12 J = 1,NN
037 CC(J) = C(J)/ C(NN)
038 12 CONTINUE
039 DO 13 J = 1,NN
040 CRNT (NN-1+J) = CC(J)
041 CRNT (NN 1-J) = CC(J)
043 13 CONTINUE
044 WRITE (4,30)
045 30 FORMAT (' CURRENTS')
046 DO 14 1 = 1,N
047 WRITE (4,300) I, CRNT(I)
049 14 CONTINUE
050 300 FORMAT (10X,12,15X,F12.8)
051 STOP
052 END
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051
052 C INVERSE HYPERBOLIC FUNCTION
053r
054 FUNCTION ROOSH (R)
055 RCOSH =ALOG(R +. SQRT(R*R -1.0))
056 RETURN
057 END
058 C*****
059 C HYPERBOLIC FUNCTION
060 Co****
061 FUNCTION COSH (R)
062 Y = EXP (R)
063 COSH = (Y + (1.0/Y) )/2.
064 RETURN
065 END
066 Coo*********

067 C GAMALN FUNCTION
068 CooE*******
069 FUNCTION GAMALN (K)
070 GAMALN = 0.0
071 IF (K .EQ. 0) RETURN
072 FACT = 0.0
073 TPL =0.91893853
074 AL K
075 10 IF (AL .GE. 10.0) GO TO 20
076 FACT = FACT + ALOG (AL)
077 AL =AL + 1.0
078 GO TO 10
079 20 TERM = (AL - 0.5) * ALOOCAL) -AL + TPL
080 1 + 1.0/(12.'AL) - 1-0/0360.0 *AL**3) + 1.0/(1260.0
081 2 AL**5) - 1.0/ (1680. *AL' 1?)
082 GAMALN =TERM - FACT
083 RETURN
084 END
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001 PROGRAM CONCHEB
002 C"""'
003 C* LINEAR ARRAY SYNTHESIS USING CONVOLUTION METHOD.
004 C' CHEBYSHEV SIDELOBE DESIGN
005 CO ODD NUMBER OF ELEMENTS.
006 Cm00*wm
007 REAL PSI(100)
008 REAL C(100),AA(100),A1(100),A2(100),A3(100),CONV(100)
009 DATA A1/1001./, A3/100*1./, CONV/100'O./, AA/100*O./
010 C*I*"" "
011 C' N = NUMBER OF ELEMENTS IN THE ARRAY. MUST BE ODDII
012 C' SLL = SIDE LOBE LEVEL IN DBS.
013 C"""1***
014 PI = 3.1415297
015 WRITE (1,100)
016 100 FORMAT (' ENTER DATA: N,SLL')
017 READ (1,200) N,SLL
018 200 FORMAT (IO,FO.O)
019 M =N-1
020 NN = (N+1)/2
021 MM = (N-1)/2
022 MD= (MM/2) + 1
023 20 CALL CHEBX(PI,M,NN,SLL,MM,PSI)
024 C"' 1 1 1 "
025 C' CREATE THREE ELEMENT ARRAYS
026 C"""1 '*t

027 30 DO 40.1 = 1,MM
028 A2(I) = -2. ' COS(PSI(I))
029 40 CONTINUE
030 C""""****
031 C' REPEATED CONVOLUTION OF 3-ELEMENT ARRAYS
032 C""""*m

m

033 CONV(1) = A1(1)
034 CONV(2) = A2(1)
035 CONV(3) = A3(0)
036 L = 1
037 K = 5
038 LX = 0
039 50 LL = NN-L
040 LX = LX+I
041 60 L = LL
042 C(1) a AI(L)
043 C(2) = A2(L)
044 C(3) = A3(L)
045 DO 70 1 = 1,3
046 DO 70 J = I,K
047 JJ a J-I+1
048 AA(J) AA(J) + CONV(JJ)'C(I)
049 70 CONTINUE
050 DO 80 1 =1,K

5 051 CONV(I) AA(I)
052 AA(I) = 0.0
053 80 CONTINUE
054 K K+2



055 IF (L.EQ.MD) GO TO 90
056 LL z NN+1-L
05T LSUM a L4.LX
059 IF (LSUM.EQ.NN) GO TO 60
060 GO TO 50
061 90 CONTINUE
062 WRITE (4,600)
063 600 FORMAT ( I CURRENTS'/)
0634 DO 120 I z 1,N
065 WRITE (4,700) I,CONV(I)
066 120 CONTINUE
067 700 FORMAT (10X,12,10X,F10.6)
068 STOP
069 END
070 FUNCTION COSH(R)
071 Y zEXP(R)
072 COSH = (Y+ (1.0/Y))/2.
073 RETURN
0734 END
075 CI**S**O*
076 C* INVERSE HYPERBOLIC COSINE FUNCTION
077 ****
078 FUNCTION RCOSH(R)
079 RCOSH =ALOOCH + SQRT(R'R - 1.0))
080 RETURN
081 END
082 C""""**
083 Cf CHEBYSHEV ZEROS
0834 C**1 3 6 1 0 6

085 SUBROUTINE CHEBX(PI,M,NN,SLL,MM,PSI)
086 REAL X(50),PSI(100)
087 R = 10.0 "*(SLL/20.)
088 B = COSH(RCOSH(R)/M)
089 DO 10 1 = 1,NN
090 J zl-1
091 X(I) a COS(PI'(2.*J + ./2*)
092 10 CONTINUE
093 DO 20OJ= 1,MM
0914 11 NN-1+J
095 JJ = NN-J
096 Y = XJ) /B
097 PSI(II) =2.'ATAN(SQRT(1-Y'Y)/Y)
098 PSI(JJ) =PSI(11)
099 20 CONTINUE
100 RETURN
101 END
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001 C PROGRAM STAYL
002 C REVISED 01/28/84
003 C THIS PROGRAM COMPUTES ELEMENT EXCITATIONS FOR TAYLOR
004 C TYPE SIDELOBES USING SYNTHESIS EXPRESSIONS OF SHELTON
005 DIMENSION Z(100),AM(100),EN(IOO),EX(100)
006 WRITE (1,100)
007 100 FORMAT P' ENTER N,NBAR,SIDELOBE LEVEL FOR TAYLOR'
008 1 'SYNTHESIS')
009 READ (1,200) N, NBAR, SLL
010 200 FORMAT (210,FO.0)
Oi1 WRITE (4,300) N, NBAR, SLL
012 300 FORMAT (' TAYLOR SYNTHESIS - SHELTON' I N='15
013 1 2X,'NBAR=',I5,2X,'SIDELOBE=', F5 .2) P5

0141 AL2 a0.30102999566398
015 ALE = 0.434294148190325
016 PI = 3.14159265358979
017 M = (N-1)12 + 0.1
018 IE =1
019 IF (N .EQ. (2*M+1)) IE =0
020 A = (SLL + 20.O'AL2) /(20.0'PI*ALE)
021 XN = FLOAT (N)
022 XN12 = FLOAT (NBAR) -0.5

023 Nl = NBAR - 1
024 ALPHA = SQRT (A*A +' XN12 * XN12)
025 DO 1 I:1,N1
026 XI12 =FLOAT (I) - 0.5
027 BETA = SQET (A*A + XI12 * X112)
028 Z(I) = ((2.O*PI/XN)/ALPHA) * FLOAT (NBAR) 'BETA
029 1 CONTINUE
030 DO 2 I=NBAR,M,1
031 Z(I) = ( FLOAT (I) * 2.0*PI)/XN
032 2 CONTINUE
033 EO =1.0
034 DO 3 I=1,M
035 3 EO = EO * (1.0-COS(Z(I)))
036 DO 5 I=1,N1
037 AM(I) = 1.0
038 DELTA = (2.091I * FLOAT(I))/XN
039 IF CIE .EQ. 1) AM(I) = COS (DELTA/2.0)
040 DO 4 J=1,M
041 41 AM(I) = AM(I) * (COS(DELTA) - COS(Z(J)))
042 AM(I) = AM(I)/EO,
043 5 CONTINUE
044 DO 6 I=1,14+1
045 XI x2*1- 2
046 IF CIE .EQ. 1) XI =XI + 1
047 EN(I) = 0.0
048 DO 7 J=1,N1
049 XJ z FLOAT (J)
050 EN(I) = AM(J * COS((PIOXI*XJ)/XN) EN(I)
051 7 CONTINUE
052 ENCI) = 2.0 0 EN(I) + 1.0
053 6 CONTINUE
054 DO 50 K=1,M~1
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055 L = N.1-K
056 EX(K) = EN(M+2-K)/EN(M+1)
057 50 EX(L) = EX(K)
058 WRITE (4,301)
059 WRITE (4,55) (I,EX(I), I=1,N)
060 301 FORMAT (I ELEM. NO.', 3X, 'EXCITATION')
061 55 FORMAT (5X,12,5X,F1'4.7)
062 STOP
063 END



001 C PROGRAM CONTAYL
002 CiS.*,**
003 C* LINEAR ARRAY SYNTHESIS USING CONVOLUTION METHOD.
004 C' TAYLOR SIDELOBE DESIGN
005 C' ODD NUMBER OF ELEMENTS.
006 C****
007 REAL PSI(100)
008 REAL C(100),AA(100),AI(100),A2(100),A3(100),CONV(100)
009 DATA AI/100'1./, A3/100*1./, CONV/100*0./, AA/100'0./ 1,0
010 Coo*****
011 CO N = NUMBER OF ELEMENTS IN THE ARRAY. MUST BE ODDII
012 C* SLL = SIDE LOBE LEVEL IN DBS.
013 C******
014 PI = 3.1415297
015 WRITE (1,100)
016 100 FORMAT (' ENTER DATA: N,NBAR,SLL')
017 READ (1,200) N,NBAR,SLL
018 200 FORMAT (210,FO.0)
019 = N-1/

020 NN = (N+1)/2
021 MM = (N-1)/2
022 MD= (MM/2) + 1
023 10 CALL TAYLX(MM,SLL,PI,PSI,N,NN,M,NBAR)
024 C1 01 00*i*
025 C' CREATE THREE ELEMENT ARRAYS
026 C****1** 3

027 30 DO 40 1 = 1,MM
028 A2(I) = -2. * COS(PSI(I))
029 40 CONTINUE
030 C******
031 C* REPEATED CONVOLUTION OF 3-ELEMENT ARRAYS
032 Co******
033 CONV(1) = AI)
034 CONV(2) a A2(1)
035 CONV(3) = A3(0)
036 L = 1
037 K = 5
038 LX = 0
039 50 LL = NN-L
040 LX = LX+I
041 60 L = LL
042 C(I) = Al(L)
043 C(2) = A2(L)
044 C(3) a A3(L)
045 DO 70 = 1,3
046 DO 70 J =I,K
047 JJ = J-I+1
048 AA(J) = AA(J) + CONV(JJ)'C(I)
049 70 CONTINUE
050 DO 80 1 = 1,K
051 CONV(I) = AA(I)
052 AA(I) = 0.0
053 80 CONTINUE
054 K a K+2
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055 IF (L.EQ.MD) GO TO 90

056 LL = NN+1-L
057 LSUM = L+LX
058 IF (LSUM.EQ.NN) GO TO 60
059 GO TO 50
060 90 CONTINUE
061 C WRITE (4,401)
062 C 401 FORMAT ( ' PSI ZEROS'/)
063 C DO 110 1= 1,M
064 C WRITE (4,500) I,PSI(I)
065 C 110 CONTINUE
066 500 FORMAT (IOX,I2,10X,F10.6)
067 WRITE (4,600)
068 600 FORMAT ( ' CURRENTS'/)
069 DO 120 1 = 1,N
070 WRITE (4,700) I,CONV(I)
071 120 CONTINUE
072 700 FORMAT (10X,12,10X,F10.6)
073 STOP
074 END
075 FUNCTION COSH(R)
076 Y = EXP(R)
077 COSH = (Y + (1.0/Y))/2.
078 RETURN
079 END
080
081 CO INVERSE HYPERBOLIC COSINE FUNCTION
082 C*** m*m m m

083 FUNCTION RCOSH(R)
084 RCOSH = ALOG(R + SQRT(RR - 1.0))
085 RETURN
086 END
087 C**m**mmm
088 C' COMPUTATION OF TAYLOR ZEROS
089 Coo*****
090 SUBROUTINE TAYLX(MM,SLL,PI,ZEROS,N,NN,M,NBAR)
091 REAL ZERO(50), ZEROS(100), MEMA,MEMB
092 NBARi = NBAR-I
093 A = (SLL + 6.0202)/27.2875
094
095 C' COMPUTE ZEROS FROM 1 TO NBAR
096 C*******O
097 DO 10 1 = 1,NBAR1
098 RI = I
099 MEMA = (A'A) + ((RI-.5)"*2.)
100 MEMB = (A*A) + ((NBAR-.5)002.)
101 ZERO(I)=(((2.'PI)*NBAR)/N)'((SQRT(MEMA))/(SQRT(MEMB)))
102 10 CONTINUE
103 C********
104 C' COMPUTE ZEROS FROM NBAR TO M
105 C**00*0*0
106 DO 20 I = NEAR,MM
107 RI = I
108 ZERO(I) = (2'PIORI)/N
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109 20 CONTINUE
110 C WRITE (4,100)
ill C 100 FORMAT ( I ZEROS')
112 C DO030 1 1,MM
113 C WRITE (4,200) I,ZERO(I)
114 C 30 CONTINUE
115 C 200 FORMAT C10X,12,10X,F10.6)
116 DO 40 J = 1,NN
117 ZEROS(NN-1+J) =ZERO(J
118 ZEROS(NN-J) =ZEROMj

119 40 CONTINUE
120 RETURN
121 END
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